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Importance of counter-rotating coupling in the superfluid-to-Mott-insulator quantum phase
transition of light in the Jaynes-Cummings lattice
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The quantum phase transition between Mott insulator and superfluid is studied in the two-dimensional Jaynes-
Cummings square lattice in which the counter-rotating coupling (CRC) is included. Both the ground state and
the spectra of low-lying excitations are obtained with use of a sophisticated unitary transformation. This CRC is
shown not only to induce a long-range interaction between cavities, favoring the long-range superfluid order, but
also to break the conservation of local polariton number at each site, leading to the absence of the Mott lobes in
the phase diagram, in sharp contrast with the case without the CRC as well as that of the Bose-Hubbard model.
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I. INTRODUCTION

Quantum phase transitions and related phenomena consti-
tute a field of great interest in the physics of strong correlation.
In recent years, the Jaynes-Cummings lattice (JCL) attracts
much attention in this field, partly because it is a very
good model system for studying strongly correlated polariton
physics and partly because it offers potential use of a quantum
simulator for solid-state Hamiltonians, just like the cold-atom
systems.

The JCL model is composed of a lattice of electromagnetic
microcavities, each coupled to a two-level atom [1], and the
intrasite Jaynes-Cummings (JC) coupling [2] is competed with
the intersite photon hopping. A mean-field treatment of the
model reveals a phase transition from Mott insulator to super-
fluid phase [3,4], resembling in large parts the phase diagram
of the Bose-Hubbard model [5] with an eminent feature of
the Mott lobes at the boundary between the insulating phase
and the superfluid one. Both numerical [6–10] and analytical
[3,4,11] methods have been employed to study the phase
diagram as well as the spectra of low-lying excitations beyond
the mean-field approximation and confirmed the existence of
the Mott lobes.

All those theoretical studies, however, have not been
done on the original JC model but under the rotating-wave
approximation (RWA). To be specific, let us write the original
Hamiltonian H for the JCL as

H =
∑

l

(
H RWA

l + H CRC
l − μN

p

l

) − J
∑
〈l,l′〉

b
†
l bl′ , (1)

with b
†
l (bl) the creation (annihilation) operator of cavity mode

at site l with frequency ω, J the hopping strength between
nearest-neighbor cavities l and l′, and μ the chemical potential
associated with N

p

l (=σ+
l σ−

l + b
†
l bl), the polariton number

operator at site l. The term H RWA
l describes the JC model in

the RWA as

H RWA
l = εσ+

l σ−
l + ωb

†
l bl + g(b†l σ

−
l + σ+

l bl), (2)

with σ±
l the Pauli matrices representing the two-level-atom

system characterized by the level difference ε and g the
atom-photon coupling.

The counter-rotating coupling (CRC) term H CRC
l , neglected

so far in the preceding works, is given by

H CRC
l = g(b†l σ

+
l + σ−

l bl). (3)

It is true that this term contributes very little compared to
the coupling terms in H RWA

l in resonance experiments to
detect real transitions, but virtual transitions contribute much
to the formation of the ground state, making the RWA for the
JCL model less reliable, especially for g of the order of ω

and/or ε. Besides, the Mott lobes in the phase diagram may be
considered as a consequence of the conservation of the local
polariton number in the RWA, or [H RWA

l ,N
p

l ] = 0, but the
CRC breaks this conservation, i.e., [H CRC

l ,N
p

l ] �= 0, implying
a radical change of the phase diagram, once the CRC is
included. Moreover, the CRC induces an additional long-range
interaction between cavities, enhancing a long-range ordering
in the JCL model.

In view of this situation, we study the effect of the CRC
on both Mott insulating and superfluid phases with use of a
unitary transformation to eliminate the CRC term in H . We
obtain a ground-state phase diagram as well as the spectra of
low-lying excitations and find that the Mott lobes are actually
absent in the JCL model.

II. UNITARY TRANSFORMATION

In the single-site JC problem, the ground state can be
found rather trivially in the RWA, but it is not the case if
the CRC is included. In order to overcome this difficulty,
we perform a series of unitary transformations on H under
the same guiding principles as described in Ref. [12] to
obtain H ′ = eS2eS1He−S1e−S2 = H ′

0 + H ′
1 + H ′

2, where S1 is
a displacement transformation

S1 = 1√
N

∑
k

∑
l

g

ωk
ξkσ

x
l (b†−k − bk)e−ik·l, (4)

and S2 is a squeezing transformation [13]

S2 = 1

2

∑
k

ln(τk)(bkb−k − b
†
kb

†
−k), (5)
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where bk is the Fourier transform of bl, N is the total number
of cavities, ωk = ω − μ − zJγ (k) (z the coordinate num-
ber), and γ (k) = [cos(kx) + cos(ky)]/2 for a two-dimensional
square lattice. The actual functional forms for the displacement
ξk and the squeezing τk will be given later.

The calculation along these transformations can be done
straightforwardly to the end and the result is

H ′
0 = N

2
� − NV0 + 1

4

∑
k

ωk
{
τ 2

k (b†−k + bk)2

− τ−2
k (b†−k − bk)2 − 2

}
+ 1

2

∑
l

η�σz
l

{
1 + 1

N

∑
k

2g2ξ 2
k

ω2
kτ

2
k

× (b†kb
†
−k + bkb−k − 2b

†
kbk)

}

− 1

N

∑
l,l′

σx
l σ

x
l′
∑

k

{
g2ξk(2 − ξk)

ωk
−V0

}
eik·(l−l′), (6)

H ′
1 = 1√

N

∑
k

∑
l

gτk(1 − ξk)σx
l (b†−k + bk)e−ik·l

− 1√
N

∑
k

∑
l

gη�

ωkτk
ξkiσ

y

l (b†−k − bk)e−ik·l, (7)

H ′
2 = �

2

∑
l

σ z
l

{
cosh(Xl) − η − 1

N

×
∑

k

2ηg2ξ 2
k

ω2
kτ

2
k

(b†kb
†
−k + bkb−k − 2b

†
kbk)

}

− �

2

∑
l

iσ
y

l {sinh(Xl) − ηXl}, (8)

where the parameters � and η are defined as

� = ε − μ and η = exp

(
− 2

N

∑
k

g2ξ 2
k

ω2
kτ

2
k

)
, (9)

respectively, and the operator Xl is introduced as

Xl = 2√
N

∑
k

gξk

ωkτk
e−ik·l (b†−k−bk). (10)

The last term in H ′
0 is an induced long-range Ising-type

interaction between atoms in different cavities, in which V0,
defined as

V0 = 1

N

∑
k

g2

ωk
ξk(2 − ξk), (11)

is subtracted so as to eliminate a constant self-interaction at
the same site.

The terms in proportion to η in H ′
0 and H ′

1 are exactly
canceled by the corresponding ones in H ′

2, but it is very
important to define H ′

2 in the present form of Eq. (8), as we
shall explain in the following: Basically, the “photon-dressing”
parameter η arises from the rearrangement of the operator
exp(Xl) into the form of normal ordering with respect to the

photon operators:

exp(Xl) = η exp

(
2√
N

∑
k

λke
−ik·lb†−k

)

× exp

(
− 2√

N

∑
k

λke
−ik·lbk

)
, (12)

where λk = gξk/ωkτk. Then, it is easy to see that sinh(Xl) −
ηXl in the second term in H ′

2 consists of the products of at
least three photon operators in normal ordering. (Needless to
say, this photon operator is not a bare one, but an effective one
renormalized by the unitary transformations.) On the other
hand, the dominant contribution to the first term in H ′

2 is
proportional to the operator

∑
l

{
cosh(Xl) − η − 2η

N

×
∑

k

λ2
k(b†kb

†
−k + bkb−k − 2b

†
kbk)

}

because σ z
l is well approximated to be −1, a constant

independent of site index l, as we shall see in the linearized
spin-wave approximation. Then, the predominant contribution
originates from the products of at least four photon operators
in normal ordering.

As a result, one can see that the dominant parts of H ′
2 in

the form of Eq. (8) are composed of terms of three, or a higher
number of, photon operators, which enables us to drop H ′

2
hereafter. Note, however, that this neglect of H ′

2 does not mean
that our calculation is valid only up to second order in g; it is
a well-known fact in the physics of polarons and bipolarons
that the strong-coupling effects on the ground and low-lying
excited states can be included to a satisfactory degree up to
infinite order of g in terms of the photon-dressing parameter
η. Therefore, as long as we employ H ′

0 and H ′
1 in the forms

of Eqs. (6) and (7), respectively, with using η in Eq. (9), we
believe that our calculation scheme of neglecting H ′

2 will work
very well even for the strong-coupling region of g.

For the substantiation of our belief, we have assessed
the accuracy of our scheme by checking the single- and
double-site JC model. (Details are given in Appendices A
and B.) In Fig. 1, we have favorably compared our results
for the ground-state energy Eg of the single-site JC model
[Eq. (A6)] with the exact ones obtained numerically by exact
diagonalization of H in Eq. (1) for the single-site case. We
have also obtained satisfactory agreement between our results
for n as the ground-state-average polariton number per site
[Eq. (A10)] with those in the exact calculation. In addition
to such numerical calculations, we have also calculated the
perturbation contribution of H ′

2 to the ground-state properties
for the single-site JC model in Appendix A and have found
that it is less than 2%, even for the resonant and moderately
strong coupling case of ω = ε = g.

Similar comparison is made in Fig. 2 for the double-site JC
model to confirm enough accuracy of our calculation scheme
in the weak-hopping region. It must be noted here that the
level crossover, which is predicted to occur in the RWA and
constitutes an important ingredient for the emergence of the
Mott lobes, is eliminated by the CRC. Concomitantly, the
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FIG. 1. (Color online) Approximate results in our scheme (solid
curves) as well as those in the RWA (double dotted-dashed lines) for
the ground-state energy Eg and the ground-state-average polariton
number per site n are compared with the corresponding exact ones
(dotted-dashed curves) for the single-site JC model at the resonant
condition ε = ω. Energies are in units of ω.

ground-state polariton number changes continuously in both
the exact and our approximate results, in sharp contrast with
the jump in the excitation number found in the RWA.

In order to estimate the degradation of our approximation
scheme with the increase of J , the hopping parameter between
two cavities, we plot the results of both Eg and n as a function
of J/g for the double-site JC model at ε = g = ω. One
can see that, although the RWA always gives poor results, our
approach provides satisfactory results for Eg and reasonably
good estimates for n, even if J is increased by an order of
magnitude from the case in Fig. 2. Thus, we are confident of
the accuracy of our scheme.

III. INSULATING PHASE

The Pauli matrices in H ′ (≈H ′
0 + H ′

1), σ
z,±
l may be

treated by the linearized spin-wave approximation [14] as

FIG. 2. (Color online) Comparison similar to that in Fig. 1 is
made for the double-site JC model at ε = ω and J = 0.05ω (the
weak-hopping case). Energies are in units of ω.

FIG. 3. (Color online) Similar comparison is made as a function
of J/g for the double-site JC model at ε = g = ω. Energies are in
units of ω.

σ z
l = 2a

†
l al − 1, σ+

l = a
†
l , and σ−

l = al with al and a
†
l bosonic

operators. Then, H ′ is approximated as

H ′ ≈HI = 1 − η

2
�N − NV0 + 1

4

∑
k

ωk
(
τ 2

k + τ−2
k − 2

)
+

∑
k

ωkτ
2
k b

†
kbk +

∑
k

η�a
†
kak

−
∑

k

{
g2

ωk
ξk(2 − ξk) − V0

}
(a†

−k + ak)(a†
k + a−k)

+
∑

k

gτk(1 − ξk)(b†−k + bk)(a†
k + a−k)

−
∑

k

gη�

ωkτk
ξk(b†−k − bk)(a†

k − a−k), (13)

where ak is the running-wave operator of al and τk is the
squeezing function, given by

τ 2
k =

√
1 + 4η�g2ξ 2

k

/
ω3

k. (14)

In Eq. (13), we have kept only the quadratic operator terms,
neglecting all cubic and quartic terms so as to focus on the
ground and low-lying excited states.

We further apply a Bogoliubov transformation to HI as

eS3HIe−S3 = EI
g +

∑
k

ωkτ
2
k b

†
kbk +

∑
k

η�ρ2
ka

†
kak

+
∑

k

g̃Ik(b†kak + a
†
kbk), (15)

with

S3 = 1

2

∑
k

ln(ρk)(a†
ka

†
−k − aka−k), (16)

where g̃Ik = 2gτk(1 − ξk)/ρk, with ρk and ξk given by

ρ2
k =

√
1 − 4[g2ξk(2 − ξk)/ωk − V0]/η�, (17)

ξk = ωkτ
2
k /

(
ωkτ

2
k + η�ρ2

k

)
. (18)

043819-3



HANG ZHENG AND YASUTAMI TAKADA PHYSICAL REVIEW A 84, 043819 (2011)

The ground-state energy of the insulating phase is obtained as

EI
g = 1

2
N (1 − 2η)� − NV0

+ 1

4

∑
k

ωk
(
τ 2

k + τ−2
k − 2

) + 1

2
η�

∑
k

ρ2
k. (19)

Note that, because of the choice of ξk and τ 2
k , eS3HIe−S3 is

of the form of rotating-wave coupling between ak and bk,
allowing us to write the ground state of the form of |GI 〉 =
|{a†

kak = 0}〉|{b†kbk = 0}〉.
Diagonalization of HI determines the excitation energies

of two branches E±
I (k) in the insulating phase as

E±
I (k) = 1

2

(
η�ρ2

k + ωkτ
2
k

) ± 1
2

√(
η�ρ2

k − ωkτ
2
k

)2 + 4g̃2
Ik.

(20)

In Fig. 4, the lower branch E−
I (k) is plotted for the resonant

case of ω = ε and �/g = 1.1. In the weak-hopping situation,
there exists a gap at k = 0 in the excitation spectrum, as can
be seen at zJ/g = 0.08, but the gap disappears at zJ/g =
0.088 76, and for zJ/g > 0.088 76, E−

I (0) becomes negative,
indicating that the insulating phase is no longer stable for this
situation, suggesting that the superfluid phase should occur
instead. Thus, the condition for the presence of the stable
insulating phase may be written as

η�ρ2
0ω0τ

2
0 � g̃2

I0 ⇒ 2G0 � η�, (21)

where G0 = 2(g2/ω0 − V0).
This condition can be used to determine the phase boundary

between the insulating and the superfluid phases, and the result
is shown in Fig. 5. For comparison, the Mott lobes predicted
in the RWA are also plotted to show that we have obtained a
totally different phase boundary.

FIG. 4. (Color online) Dispersion relation of the lower-branch
excitation for the two-dimensional JC square lattice at ω = ε and
�/g = 1.1. Energies are in units of ω. The excitation energies are
gapped in both insulating (zJ/g = 0.08) and superfluid (zJ/g =
0.092) phases except for the case of zJ/g = 0.088 76, at which the
phase transition occurs.

FIG. 5. (Color online) Phase diagram in (zJ/g,(μ − ω)/g) space
for the two-dimensional JC square lattice at the resonant condition
ω = ε.

IV. SUPERFLUID PHASE

In the superfluid phase with 2G0 > η�, we introduce a
static displacement of the k = 0 photon mode to transform H ′

0
and H ′

1 as

eRH ′
0e

−R = N�

2
− NV0 + NG0σ

2
0

2

+ 1

4

∑
k

ωk
{
τ 2

k (b†−k+bk)2 − τ−2
k (b†−k−bk)2−2

}

+ 1

N

∑
k

g2ξ 2
k

ω2
kτ

2
k

(b†kb
†
−k + bkb−k − 2b

†
kbk)

×
∑

l

η�σz
l + 1

2

∑
l

η�σz
l −

∑
l

G0σ0σ
x
l

− 1

N

∑
k

(
g2ξk(2−ξk)

ωk
−V0

)

×
∑

i,j

eik·(i−j)(σx
i − σ0)(σx

j − σ0), (22)

eRH ′
1e

−R = 1√
N

∑
k

gτk(1 − ξk)(b†−k + bk)

×
∑

l

e−ik·l(σx
l − σ0

) − 1√
N

∑
k

gη�

ωkτk

× ξk(b†−k − bk)
∑

l

iσ
y

l e−ik·l, (23)

with the operator R defined by

R =
√

Ngσ0(1−ξ0)(b†0−b0)/ω0τ0. (24)

The subscript 0 in Eq. (24) refers to the case of k = 0. Then,
after a rotation of the Pauli matrices at every site l as

H ′′ = U †eR(H ′
0 + H ′

1)e−RU = H ′′
0 + H ′′

1 , (25)

with a unitary matrix U given by

U =
∏

l

(
vσ x

l − uσ z
l

)
, (26)
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where the parameters u and v are, respectively, determined
as u = √

(1 + η�/W )/2 and v = √
(1 − η�/W )/2 with

W =
√

4G2
0σ

2
0 + η2�2 and σ 2

0 = 1 − η2�2/4G2
0, we get the

expressions for H ′′
0 and H ′′

1 as

H ′′
0 = N�

2
− NV0 + NG0σ

2
0

2
+ 1

4

∑
k

ωk
{
τ 2

k (b†−k + bk)2 − τ−2
k (b†−k − bk)2 − 2

}

+ 1

N

∑
k

g2ξ 2
k

ω2
kτ

2
k

(b†kb
†
−k + bkb−k − 2b

†
kbk)

∑
l

η�

(
η�

W
σz

l −σ0σ
x
l

)
+ 1

2

∑
l

Wσz
l

− 1

N

∑
k

{
g2ξk(2 − ξk)

ωk
− V0

} ∑
i,j

eik·(i−j)
{

η�

W
σx

i + σ0
(
σ z

i + 1
)}{

η�

W
σx

j + σ0
(
σ z

j + 1
)}

, (27)

H ′′
1 = 1√

N

∑
k

gη�

ωkτk
ξk(b†−k − bk)

∑
l

iσ
y

l e−ik·l − 1√
N

∑
k

gτk(1 − ξk)(b†−k + bk)
∑

l

e−ik·l
{

η�

W
σx

l + σ0
(
σ z

l + 1
)}

. (28)

The linearized spin-wave approximation, together with the same approximation as used in deriving Eq. (13), is further employed
in H ′′ to reach HS as

H ′′ ≈ HS = 1

2
N (� − W ) − NV0 + NG0σ

2
0

2
+ 1

4

∑
k

ωk
(
τ 2

k + τ−2
k − 2

)

+
∑

k

ωkτ
2
k b

†
kbk +

∑
k

Wa
†
kak −

(
η�

W

)2 ∑
k

{
g2ξk(2 − ξk)

ωk
− V0

}
(a†

−k + ak)(a†
k + a−k)

+
∑

k

gη�

ωkτk
ξk(b†−k − bk)(a†

k − a−k) −
∑

k

gη�

W
τk(1 − ξk)(b†−k + bk)(a†

k + a−k), (29)

where the squeezing function τk is not the same as the one in
the insulating case [Eq. (14)], but is given by

τ 2
k =

√
1 + 4η2�2g2ξ 2

k/Wω3
k. (30)

After a Bogoliubov transformation with use of the generator
S4, defined by

S4 = 1

2

∑
k

ln(θk)(a†
ka

†
−k − aka−k), (31)

we finally obtain the expression for the Hamiltonian as

eS4HSe−S4 = ES
g +

∑
k

ωkτ
2
k b

†
kbk +

∑
k

Wθ2
ka

†
kak

−
∑

k

g̃Sk(b†kak + a
†
kbk), (32)

where g̃Sk = 2gη�τk(1 − ξk)/Wθk with θk and ξk given by

θ2(k) =
√

1 − 4η2�2[g2ξk(2 − ξk)/ωk − V0]/W 3, (33)

ξk = ωkτ
2
k

/(
ωkτ

2
k + Wθ2

k

)
. (34)

Note that the displacement function ξk in Eq. (34) is different
from the one in the insulating case [Eq. (18)].

By referring to the fact that the structure of the coupling
between ak and bk in eS4HSe−S4 is the same as that in
the rotating-wave coupling, we can immediately write the

ground state of eS4HSe−S4 in the form of |GS〉 = |{a†
kak =

0}〉|{b†kbk = 0}〉 with the corresponding ground-state energy
of the superfluid phase as

ES
g = 1

2
N

(
� − 2W − 2V0 + G0σ

2
0

)
+ 1

4

∑
k

ωk
(
τ 2

k + τ−2
k − 2

) + 1

2

∑
k

Wθ2
k . (35)

Two branches of excitations in the superfluid phase E±
S (k)

are obtained by diagonalization of eS4HSe−S4 as

E±
S (k) = 1

2

(
Wθ2

k + ωkτ
2
k

) ± 1

2

√(
Wθ2

k − ωkτ
2
k

)2 + 4g̃2
Sk.

(36)

Obviously, the following condition must be satisfied for E−
S (k)

to be a stable excitation mode:

Wθ2
0 ω0τ

2
0 � g̃2

S0 ⇒ 2G0 � η�. (37)

This condition is exactly the complementation of the condition
(21). At the transition point, E−

S (k) is the same as E−
I (k)

(see Fig. 4). But, for zJ/g = 0.092 (>0.088 76), E−
S (k) has a

positive gap as shown in Fig. 4.
The gap in the lower-branch excitation spectrum and the

order parameter estimated by 〈GH |bl|GH 〉 are shown in Fig. 6
as a function of the hopping parameter zJ/g, where |GH 〉
denotes the ground state of the original Hamiltonian H . This
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FIG. 6. (Color online) Gap and order parameter as a function of
the hopping for the two-dimensional JC square lattice at ω = ε and
�/g = 1.1. Energies are in units of ω.

order parameter

〈GH |bl|GH 〉 = 〈GS |eS4U †eReS2eS1ble
−S1e−S2e−RUe−S4 |GS〉

= gσ0

ω0
(38)

is calculated as the ground-state average of the photonic
annihilation operator, and the result is given as gσ0/ω0. One
can see that the gap vanishes at the transition point, and the
order parameter grows up from zero for zJ/g � 0.088 76,
indicating a second-order phase transition.

Finally, we add a comment on the gapped excitations
from the viewpoint of the Goldstone theorem: For the JC
lattice in the RWA, the polariton number

∑
l(σ

+
l σ−

l + b
†
l bl)

is conserved, which is similar to the conservation of the total
boson number in the Bose-Hubbard model. In the superfluid
phase, the emergence of the order parameter 〈GH |bl|GH 〉 �= 0
breaks the number conservation in both models, leading to the
Goldstone theorem according to which the gapless bosons
should appear to restore the symmetry. When the CRC is
included in the JC lattice as in the present case, however, the
number conservation is broken from the outset; in this case, we
have only the parity conservation with parity operator defined
by exp[iπ

∑
l(σ

+
l σ−

l + b
†
l bl)], which is a discrete symmetry.

Thus, the Goldstone theorem does not apply to our case.

V. CONCLUSION

In summary, we have studied the ground state and the
spectra of low-lying excitations of a two-dimensional JC
square lattice in both the insulating and the superfluid phases
and have shown that, as a result of the competition between
the intrasite JC coupling and the intersite photon hopping, a
quantum phase transition between the Mott insulator and the
long-range superfluid may occur at some critical parameters.
The counter-rotating coupling induces a long-range interaction
between cavities, which favors the long-range superfluid order-
ing. The coupling breaks the local conservation of the polariton
number, leading to a totally different phase diagram from that
in the Bose-Hubbard model. More specifically, the Mott lobes,

which are a conspicuous feature in the phase diagram in the
Bose-Hubbard model, are totally absent in the JCL.

ACKNOWLEDGMENTS

This work was supported by the National Basic Research
Program of China (Grant No. 2011CB922202) and the
National Natural Science Foundation of China (Grant No.
10734020). This work was also supported by a Grant-in-Aid
for Scientific Research (C) (Grant No. 21540353) as well
as Innovative Area “Materials Design through Computics:
Complex Correlation and Non-Equilibrium Dynamics” (Grant
No. 22104011) from MEXT, Japan.

APPENDIX A: SINGLE-SITE JC MODEL

After the first two unitary transformations with the use of
S1 and S2, the transformed Hamiltonian H ′ for the single-site
JC model may be written as the sum of three terms H ′

0, H ′
1,

and H ′
2, each of which is given as follows:

H ′
0 = 1

2
ε + 1

2
ηεσ z − g2

ω
ξ (2 − ξ )

+ 1

4
ω{τ 2(b† + b)2 − τ−2(b† − b)2 − 2}

− 1

4
ηελ2(b†b† + bb − 2b†b) − 1

2
ηε(σ z + 1)λ2b†b,

(A1)

H ′
1 = gτ (1 − ξ )σx(b† + b) − gηε

ωτ
ξiσ y(b† − b), (A2)

H ′
2 = −ε

2

{
cosh[λ(b† − b)] − η − η

λ2

2
(b†b† + bb − 2b†b)

}

− ε

2
iσ y{sinh[λ(b† − b)] − ηλ(b† − b)}

+ ε

2
(σ z + 1){cosh[λ(b† − b)] − η + ηλ2b†b}, (A3)

where λ = 2gξ/ωτ and η is the photon dressing of the
level difference, given by εη = exp(−λ2/2). At this point,
no approximation is made and all terms in H ′ are retained,
although some rearrangements among them are made.

By choosing the squeezing parameter τ as

τ 2 =
√

1 + 4ηεg2ξ 2/ω3, (A4)

we may diagonalize H ′
0 into the following form:

H ′
0 = Eg + 1

2ηε(1 + σ z) + 1
2ω(1 − σ z)τ 2b†b

+ 1
2ω(1 + σ z)τ−2b†b, (A5)

where the constant energy Eg is defined as

Eg = 1

2
ε(1 − η) − g2

ω
ξ (2 − ξ ) + 1

4
ω(τ 2 + τ−2 − 2). (A6)

Similarly, by choosing the displacement parameter ξ as

ξ = ωτ 2

ωτ 2 + ηε
, (A7)

we may eliminate the CR terms in H ′
1, leading to the expression

for H ′
1 as

H ′
1 = ηελ(b†σ− + σ+b), (A8)

in which only the RW terms are present.
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An eigenstate of H ′
0 in Eq. (A5) is described in a form of

the direct product |±〉|i〉, where |±〉 is the eigenstate of σz:
|+〉 = ( 1

0 ) or |−〉 = ( 0
1 ), and |i〉 is the photonic number state

with i phonons. Then, it is easy to check that the ground state of
H ′

0 + H ′
1 is described by |G1〉 = |−〉|0〉 with the ground-state

energy Eg in Eq. (A6), namely,

(H ′
0 + H ′

1)|G1〉 = Eg|G1〉. (A9)

With this state |G1〉, the ground-state-average polariton num-
ber n is given by

n = 〈G1|eS2eS1 (σ+σ− + b†b)e−S1e−S2 |G1〉
= 1 − η + 1

4
(τ 2 + τ−2 − 2) + g2

ω2
ξ 2. (A10)

The results in Eqs. (A6) and (A10) are used in plotting Fig. 1.
Let us examine the effects of H ′

2 on this state |G1〉. The
photon operators in H ′

2 may be expanded as

cosh[λ(b† − b)] − η − η
λ2

2
(b†b† + bb − 2b†b)

= 1

2
η[exp(λb†) exp(−λb) + exp(−λb†) exp(λb)

−2 − λ2(b†b† + bb − 2b†b)] = O(λ4), (A11)

sinh[λ(b† − b)] − ηλ(b† − b)

= 1

2
η[exp(λb†) exp(−λb) − exp(−λb†) exp(λb)

− 2λ(b† − b)] = O(λ3). (A12)

Here, all photon operators are arranged in normal order-
ing and the renormalization factor η arises from the re-
lation exp[λ(b† − b)] = η exp(λb†) exp(−λb). The results in
Eqs. (A11) and (A12) indicate that all zeroth-, first-, and
second-order terms of λ are removed from H ′

2 and, instead,
they are put into H ′

0 and H ′
1. Thus, the effects of H ′

2 on the
ground-state energy appear through multiphoton nondiagonal
virtual transitions from |G1〉.

With this recognition, the correction to Eg due to H ′
2 may

be estimated by perturbation theory with the formula �Eg =∑
m |〈m|H ′

2|G1〉|2/(Eg − Em), where |m〉 is an excited state
of H ′

0 with energy Em. Concretely, the correction from the first
term in H ′

2 is given by [see Eq. (A11)]

C1 = − η2ε2

4ωτ 2

∞∑
j=2

(λ2)2j

2j (2j )!

= − η2ε2

4ωτ 2

[ ∫ λ2

0

cosh(x) − 1

x
dx − λ4

4

]
. (A13)

Similarly, the correction from the second term in H ′
2 is less

than the quantity C2, given by [see Eq. (A12)]

C2 = − η2ε2

4ωτ−2

∞∑
j=1

(λ2)2j+1

(2j + 1)(2j + 1)!

= − η2ε2

4ωτ−2

[ ∫ λ2

0

sinh(x)

x
dx − λ2

]
. (A14)

We have estimated the values of C1 and C2 for the resonant
case with moderately strong coupling (ω = ε = g = 1) to find
that Eg(exact) = −1.1479 (numerical exact diagonalization),
Eg(our scheme) = −1.1330 [Eq. (A6)], C1 = −0.0027, and
C2 = −0.0183, implying that the perturbation correction from
H ′

2 is less than 2%. Thus, we believe that for calculating
the ground-state properties, the contribution from H ′

2 may be
safely dropped.

APPENDIX B: DOUBLE-SITE JC MODEL

Calculations for the double-site JC model can be done by
extending those for the single-site JC model. A complication
arises from the existence of two kinds of photons: in-phase
photon with k = 0,ω0 = ω − J and antiphase photon with k =
π,ωπ = ω + J . After the first two transformations with the use
of S1 and S2, the transformed Hamiltonian H ′ containing all
terms may be written as the sum of three terms H ′

0, H ′
1, and

H ′
2, each of which is given as follows:

H ′
0 = ε − g2

ω0
ξ0(2 − ξ0) − g2

ωπ

ξπ (2 − ξπ ) + 1

2
ηε

(
σ z

1 + σ z
2

) − V σx
1 σx

2 + ω0

4

{
τ 2

0 (b†0 + b0)2 − τ−2
0 (b†0 − b0)2 − 2

}
+ ωπ

4

{
τ 2
π (b†π + bπ )2 − τ−2

π (b†π − bπ )2 − 2
} + 1

2
ηε

(
σ z

1 + σ z
2

){
λ2

0(b†0b
†
0 + b0b0 − 2b

†
0b0) + λ2

π (b†πb†π + bπbπ − 2b†πbπ )
}
,

(B1)

H ′
1 = g√

2
τ0(1 − ξ0)(b†0 + b0)

(
σx

1 + σx
2

) − ηε√
2
λ0(b†0 − b0)

(
iσ

y

1 + iσ
y

2

)
+ g√

2
τπ (1 − ξπ )(b†π + bπ )

(
σx

1 − σx
2

) − ηε√
2
λπ (b†π − bπ )

(
iσ

y

1 − iσ
y

2

)
, (B2)

H ′
2 = −ε

2

2∑
l=1

iσ
y

l [sinh(Xl) − ηXl] (B3)

+ε

2

2∑
l=1

σ z
l

{
cosh(Xl) − η − ηλ2

0(b†0b
†
0 + b0b0 − 2b

†
0b0) − ηλ2

π (b†πb†π + bπbπ − 2b†πbπ )
}
, (B4)
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where the operator Xl and the parameter V are, respectively,
introduced as

Xl =
√

2λ0(b†0 − b0) −
√

2(−1)lλπ (b†π − bπ ), (B5)

V = g2

ω0
ξ0(2 − ξ0) − g2

ωπ

ξπ (2 − ξπ ), (B6)

with λ0 = gξ0/ω0τ0, λπ = gξπ/ωπτπ , and η =
exp(−λ2

0 − λ2
π ).

The ground state of H ′
0, |G2〉 is represented by the sum of

two direct products:

|G2〉 = (u| − ,−〉 + v| + ,+〉)|00,0π 〉, (B7)

where | − ,−〉 is the state for both spins in the “−” state,
|00,0π 〉 is the vacuum state for both in-phase and antiphase
photons, the squeezing parameters τ0 and τπ are given by

τ 2
0 =

√
1 + 4η2ε2g2ξ 2

0

Yω3
0

, τ 2
π =

√
1 + 4η2ε2g2ξ 2

π

Yω3
π

, (B8)

and the parameters u and v are given as u =√
(1 + ηε/Y )/2 and v = √

(1 − ηε/Y )/2, respectively, with
Y =

√
η2ε2 + V 2.

The corresponding ground-state energy Eg is obtained as

Eg = ε −
√

η2ε2 + V 2 − g2

ω0
ξ0(2 − ξ0) − g2

ωπ

ξπ (2 − ξπ )

+ 1

4
ω0

(
τ 2

0 + τ−2
0 − 2

) + 1

4
ωπ

(
τ 2
π + τ−2

π − 2
)
. (B9)

By choosing the displacement parameters ξ0 and ξπ as

ξ0 = ω0τ
2
0

ω0τ
2
0 + Y − V

, ξπ = ωπτ 2
π

ωπτ 2
π + Y + V

, (B10)

we can eliminate the CR terms in H ′
1 to give H ′

1|G2〉 = 0.
Finally, the ground-state-average polariton number per site n

for the two-site JC model is calculated as

2n = 〈G2|eS2eS1
∑
l=1,2

(σ+
l σ−

l + b
†
l bl)e

−S1e−S2 |G2〉

= 1 − η2ε/Y +
∑

k=0,π

(
τ 2
k + τ−2

k − 2
)
/4

+
∑

k=0,π

g2ξ 2
k /ω2

k + g2V
(
ξ 2

0 /ω2
0 − ξ 2

π/ω2
π

)
/Y. (B11)

The results in Eqs. (B9) and (B11) are used in plotting Figs. 2
and 3 .

[1] M. J. Hartmann, F. G. S. L. Brandao, and M. B. Plenio, Laser
Photonics Rev. 2, 527 (2008).

[2] E. Jaynes and F. Cummings, Proc. IEEE 51, 89 (1963).
[3] A. D. Greentree et al., Nat. Phys. 2, 856 (2006).
[4] J. Koch and K. Le Hur, Phys. Rev. A 80, 023811 (2009).
[5] M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher,

Phys. Rev. B 40, 546 (1989).
[6] M. I. Makin, J. H. Cole, C. Tahan, L. C. L. Hollenberg, and

A. D. Greentree, Phys. Rev. A 77, 053819 (2008).
[7] P. Pippan, H. G. Evertz, and M. Hohenadler, Phys. Rev. A 80,

033612 (2009).
[8] D. Rossini and R. Fazio, Phys. Rev. Lett. 99, 186401 (2007).

[9] M. Aichhorn, M. Hohenadler, C. Tahan, and P. B. Littlewood,
Phys. Rev. Lett. 100, 216401 (2008).

[10] M. Knap, E. Arrigoni, and W. von der Linden, Phys. Rev. B 81,
104303 (2010).

[11] S. Schmidt and G. Blatter, Phys. Rev. Lett. 103, 086403 (2009);
104, 216402 (2010).

[12] H. Zheng, S. Y. Zhu, and M. S. Zubairy, Phys. Rev. Lett. 101,
200404 (2008).

[13] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge
University Press, Cambridge, UK, 1997).

[14] D. C. Mattis, The Theory of Magnetism (Springer, Berlin,
1988).

043819-8

http://dx.doi.org/10.1002/lpor.200810046
http://dx.doi.org/10.1002/lpor.200810046
http://dx.doi.org/10.1109/PROC.1963.1664
http://dx.doi.org/10.1038/nphys466
http://dx.doi.org/10.1103/PhysRevA.80.023811
http://dx.doi.org/10.1103/PhysRevB.40.546
http://dx.doi.org/10.1103/PhysRevA.77.053819
http://dx.doi.org/10.1103/PhysRevA.80.033612
http://dx.doi.org/10.1103/PhysRevA.80.033612
http://dx.doi.org/10.1103/PhysRevLett.99.186401
http://dx.doi.org/10.1103/PhysRevLett.100.216401
http://dx.doi.org/10.1103/PhysRevB.81.104303
http://dx.doi.org/10.1103/PhysRevB.81.104303
http://dx.doi.org/10.1103/PhysRevLett.103.086403
http://dx.doi.org/10.1103/PhysRevLett.104.216402
http://dx.doi.org/10.1103/PhysRevLett.101.200404
http://dx.doi.org/10.1103/PhysRevLett.101.200404

